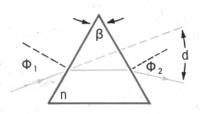
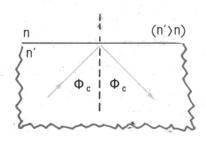
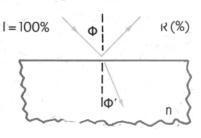

SNELL'S LAW


DISPLACEMENT THROUGH PARALLEL PLATE

DEVIATION THROUGH SMALL WEDGE



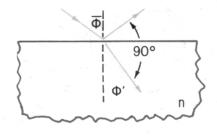
ANGULAR DISPLACEMENT THROUGH A BRISM


$$d = \Phi_1 + \Phi_2 - \beta$$

$$\Phi_2 = \sin^{-1}[n \sin(\beta - \Phi_1)]$$
 where $\Phi_1 = \sin^{-1}[\frac{1}{n} \sin \Phi_1]$

CRITICAL ANGLE FOR TOTAL INTERNAL REFLECTION

$$\sin \Phi_c = \frac{n}{n'}$$


TOTAL REFLECTANCE

$$R = \frac{1}{2} \left[\frac{\sin^2(\Phi - \Phi')}{\sin^2(\Phi + \Phi')} + \frac{\tan^2(\Phi - \Phi')}{\tan^2(\Phi + \Phi')} \right]$$

=
$$(\frac{n-1}{n+1})^2$$
 when $\Phi = 0^{\bullet}$
See Graph on the following page.

BREWSTER'S ANGLE

 $\overline{\Phi} = t\alpha n^{-1} n$ More relevant in the Wave Unit

I don't think these guys would mind a bit of free advertising!

Box 82 Caldwell, New Jersey 07006 (201) 228-4480 Telex 4974643 FAX (201) 2**28**-0915 NEUTRAL FILTERS: DENSITY vs TRANSMITTANCE

$$D = \log_{10}(\frac{1}{T})$$

 $T = (\log^{-1}D)^{-1} = (10^{\circ})^{-1}$ More relevant in the Color Unit!

PLANE OF INCIDENCE is the Plane containing the Rays of Light

More relevant in the Wave Unit!

TRANSMITTANCE OF PLANE - PARALLEL PLATE, INDEX = n

$$T = \frac{2n}{n^2 + 1}$$
 assuming zero absorption

$$T = \frac{e^{-\alpha t} (1 - R)^2}{1 - R^2 e^{-2\alpha t}}$$
 includes both absorptive and reflective losses

COMPONENTS OF POLARIZATION IN REFLECTED LIGHT

P-POLARIZATION...Plane of Polarization PARALLEL to Plane of Incidence

S-POLARIZATION. Plane of Polarization PERPENDICULAR to Plane of Incidence

For example, at 45°, transmittance of a zero-absorption thin plate is:

$$n = 1.517$$

 $T = 0.825$

See Graph on the following page. S = small dashes, P = large dashes

$$R_s = \frac{\sin^2(\Phi - \Phi')}{\sin^2(\Phi + \Phi')}$$

$$_{p} = \frac{\tan^{2}(\Phi - \Phi)}{\tan^{2}(\Phi + \Phi)}$$